Math, asked by prathimagujja, 10 months ago

Required ra
SOLVED EXAMPLES
Example 1. Find the co-ordinates of the point P which divides the line segment joining
A(8,9) and B(-7, 4), internally in the ratio 2 : 3.
Clearly, y =
The co-ord​

Answers

Answered by Arceus02
5

We're given,

\longrightarrow \sf{A(8, 9) = ({x}_{1}, {y}_{1})}

\longrightarrow \sf{P = (\alpha, \beta)}

\longrightarrow \sf{B(-7, 4) = ({x}_{2}, {y}_{2})}

\longrightarrow \sf{AP:PB = m:n = 2:3}

\sf{\\ \\}

We know by section formula, when a point \sf{P(\alpha, \beta)} intersects internally a line segment AB where \sf{A({x}_{1},{y}_{1})} and \sf{B({x}_{2},{y}_{2})} in the ratio m : n, then:-

\quad \quad \longrightarrow \sf{\alpha = \dfrac{m{x}_{2} + n{x}_{1}}{m + n}}

\quad \quad \longrightarrow \sf{\beta = \dfrac{m{y}_{2} + n{y}_{1}}{m + n}}

\sf{\\ \\}

So, putting the values,

For alpha,

\longrightarrow \sf{\alpha = \dfrac{m{x}_{2} + n{x}_{1}}{m + n}}

\longrightarrow \sf{\alpha = \dfrac{(2 * -7) + (3 * 8)}{2 + 3}}

\longrightarrow \sf{\alpha = \dfrac{ - 14 + 24}{5}}

\longrightarrow \sf{\alpha = \dfrac{10}{5}}

\longrightarrow \underline{\sf{\alpha = 2}}

\sf{\\ \\}

For beta,

\longrightarrow \sf{\beta = \dfrac{m{y}_{2} + n{y}_{1}}{m + n}}

\longrightarrow \sf{\beta = \dfrac{(2 * 4) + (3 * 9)}{2 + 3}}

\longrightarrow \sf{\beta = \dfrac{ 8 + 27}{5}}

\longrightarrow \sf{\beta =  \dfrac{35}{5}}

\longrightarrow \underline{\sf{\beta = 7}}

\sf{\\ \\}

Hence the answer is,

\longrightarrow{\underline{\underline{\sf{  P = (2,7)}}}}

Similar questions