Math, asked by prabhu21439, 6 hours ago

resolve into partial fraction 3x+1/(x-3)(x+1)​

Attachments:

Answers

Answered by dcmallik1396
0

Step-by-step explanation:

 \frac{3x + 1}{(x - 2)(x + 1)}  =  \frac{a}{(x - 2)}  +  \frac{b}{(x + 1)}

 \frac{3x + 1}{(x - 2)(x + 1)}  =  \frac{a(x + 1) + b(x - 2)}{(x - 2)(x + 1)}

(3x + 1) = a(x + 1) + b(x - 2)

Putting x=2

(3 \times 2 + 1) = a(2 + 1) + b(2 - 2) \\  =  > 7 = 6a \\  =  > a =  \frac{7}{6}

Putting x=1

3 \times  (- 1 )+ 1 = a( - 1 + 1) + b( - 1 - 2)

 - 2 =  - 3b

b =  \frac{2}{3}

Answered by Manmohan04
0

Given,

\[\frac{{3x + 1}}{{\left( {x - 3} \right)\left( {x + 1} \right)}}\]

Solution,

Calculate the partial fraction,

\[\frac{{3x + 1}}{{\left( {x - 3} \right)\left( {x + 1} \right)}} = \frac{A}{{\left( {x - 3} \right)}} + \frac{B}{{\left( {x + 1} \right)}}\]

\[ \Rightarrow \frac{{3x + 1}}{{\left( {x - 3} \right)\left( {x + 1} \right)}} = \frac{{A\left( {x + 1} \right) + B\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x + 1} \right)}}\]

\[ \Rightarrow \frac{{3x + 1}}{{\left( {x - 3} \right)\left( {x + 1} \right)}} = \frac{{Ax + A + Bx - 3B}}{{\left( {x - 3} \right)\left( {x + 1} \right)}}\]

\[ \Rightarrow 3x + 1 = \left( {A + B} \right)x + \left( {A - 3B} \right)\]

Compare both equations,

\[\begin{array}{l}A + B = 3 -  -  -  - \left( 1 \right)\\A - 3B = 1 -  -  -  - \left( 2 \right)\end{array}\]

Solve both equations,

\[A = \frac{5}{2},B = \frac{1}{2}\]

Partial fraction \[ = \frac{5}{{2\left( {x - 3} \right)}} + \frac{1}{{2\left( {x + 1} \right)}}\]

Hence the partial fraction is \[\frac{5}{{2\left( {x - 3} \right)}} + \frac{1}{{2\left( {x + 1} \right)}}\].

Similar questions