Math, asked by apekshasutaria, 3 months ago

RIGHT ANSWERS ONLY ✓✓

NO 3 AND 4​

Attachments:

Answers

Answered by Anonymous
18

Question-1:

Show that: \sf {(\dfrac {4m}{3}- \dfrac {3n}{4})^{2} + 2mn = \dfrac {16}{9} m^{2} + \dfrac {9}{16}n^{2}}

 \:

Solution:

\sf {(\dfrac {4m}{3}- \dfrac {3n}{4})^{2} + 2mn = \dfrac {16}{9} m^{2} + \dfrac {9}{16}n^{2}}

\bigstar {\sf {\orange {Using\ the\ identity, (a-b)^{2} = a^{2} - 2ab + b^{2}}}}

\sf {(\dfrac {4m}{3}) ^{2} - 2 \times  \dfrac{4m}{3} \times  \dfrac{3n}{4} +   (\dfrac {3n}{4})^{2} + 2mn = \dfrac {16}{9} m^{2} + \dfrac {9}{16}n^{2}}

\sf {(\dfrac {4m}{3}) ^{2} - 2 \times  \dfrac{\cancel{4}m}{\cancel{3}} \times  \dfrac{\cancel{3}n}{\cancel{4}} +   (\dfrac {3n}{4})^{2} + 2mn = \dfrac {16}{9} m^{2} + \dfrac {9}{16}n^{2}}

\sf {(\dfrac {4m}{3}) ^{2} - 2 mn +   (\dfrac {3n}{4})^{2} + 2mn = \dfrac {16}{9} m^{2} + \dfrac {9}{16}n^{2}}

\sf {(\dfrac {4m}{3}) ^{2} \cancel{- 2 mn} +   (\dfrac {3n}{4})^{2}  \cancel{ + 2 mn} = \dfrac {16}{9} m^{2} + \dfrac {9}{16}n^{2}}

\sf {(\dfrac {4m}{3}) ^{2} +   (\dfrac {3n}{4})^{2} = \dfrac {16}{9} m^{2} + \dfrac {9}{16}n^{2}}

\sf {\dfrac {16}{9} m ^{2} +   \dfrac {9 }{16}   n ^{2} = \dfrac {16}{9} m^{2} + \dfrac {9}{16}n^{2}}

LHS = RHS

Hence, proved!

 \:

Question-2:

Divide: 52pqr (p+q) (q+r) (r+p) ÷ 104pq (q+r) (r+p)

 \:

Solution:

 \sf \dfrac{52pqr (p+q) (q+r) (r+p)}{ 104pq (q+r) (r+p)}

 \sf \dfrac{ \cancel{52}\cancel{pq}r (p+q) (q+r) (r+p)}{ \cancel{104}\cancel{pq} (q+r) (r+p)}

 \sf \dfrac{ r (p+q)  \cancel{(q+r) }\cancel{(r+p)}}{ 2 \cancel{(q+r) }\cancel{(r+p)}}

\implies \sf \dfrac{ r (p+q) }{ 2 }

Similar questions