rite True (T) or False (F): The product of two numbers with opposite signs is always negative. TH
Answers
Answer:
Yes it's true
Step-by-step explanation:
Given :-
Student's: A B C D E F G H I J
Height (in CM's): 155, 153, 168, 160, 162, 166, 164, 180, 157, 165
To Find :-
Arthimetic mean
Solution :-
Arthimetic mean - A + Σfd/Σf
Taking mean as 162 as it lies in the middle
\begin{gathered}\left[\begin{array}{ccc}\bf Height&\bf Mean_{Difference}&\bf Product\\155&155-162=-7&155(-7)=-1085\\153&153-162=-9&153(-9)=-1377\\ 168&168-162=6&168(6)=1008\\ 160&160-162=-2&160(-2)=-320\\162&162-162=0&162(0)=0\\ 166&166-162=4&166(4)=664\\ 164&164-162=2&164(2)=328\\ 180&180-162=18& 180(18)=3240\\157&157-162=-5&157(-5)=-785\\ 165&165-162=3&165(3)=495\\\sf \sum f =1622&&\sf \sum fd=2168 \end{array}\right]\end{gathered}⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡Height155153168160162166164180157165∑f=1622MeanDifference155−162=−7153−162=−9168−162=6160−162=−2162−162=0166−162=4164−162=2180−162=18157−162=−5165−162=3Product155(−7)=−1085153(−9)=−1377168(6)=1008160(−2)=−320162(0)=0166(4)=664164(2)=328180(18)=3240157(−5)=−785165(3)=495∑fd=2168⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
By using the above formula
[Note - I'm writing A.M instead of the Arithmetic mean]
A.M = 162 + (2168/1622)
A.M = 162 + 1.33
A.M = 163.33 cm
Answer:
hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
brooooooooooooooooooooooooo