Physics, asked by tarunkumar6713, 1 year ago

Rod of length l has a total charge q distributed uniformly along its length it is bent in the shape of semicircle find the magnitude of electric field at the centre of curvature of semicircle

Answers

Answered by GarmadonMaximus21
17

By conservation of length, we can say

l=pi*r.

=>r=l/pi

Now, at angle theta from the axis of symmetry of semicircle, take a differential length dl on the semicircle.

=>dl=r*d(theta)

=>dq=(q/l)*dl

You can easily calculate field due to dl as,

dE=k*dq/r^2

This dE will have two components out of which the one away from the semicircle will be net dE.

Now integrate dE from theta=-pi/2 to pi/2

You will easily get your answer

Answered by bhuvna789456
18

The magnitude of electric field at the centre of curvature of semi-circle is, E=\frac{\theta}{2 \varepsilon_{0} L^{2}}.

Explanation:

As we know that,

                            \lambda=\mathrm{Q} / \mathrm{L}

Where,        λ is nothing but the charge per unit length  

                   L is length of rod

                  Q is l charge  

                  \mathrm{dq}_{1} \text { for a length i.e } \mathrm{d} =\lambda^{\times} \mathrm{d}l

Center electric field due to charge = k .^{\frac{d q}{r^{2}}}

The horizontal Electric field components complement one another.

All that remains are vertical components.  

Net Electrical field vertically

                     d_{E}=2 E \cos \theta

                     d_{E}=\mathrm{k} \frac{d q}{r^{2}} \times \cos \theta

                     d_{E}=\frac{2 k \cos \theta}{r^{2}} \lambda \times \mathrm{d} 1

But d,               \theta=\frac{d l}{r}=d l=r d \theta

                      d_{E}=\frac{2 k \lambda}{r^{2}} \cos \theta \times r d \theta

                       d_{E}=\frac{2 k \lambda}{r} \cos \theta d \theta

Integration,

                          E=\int_{0}^{\frac{\pi}{2}} \frac{2 k \lambda}{r} \cos \theta d \theta

                          E=\int_{0}^{\frac{\pi}{2}} \frac{2 k \lambda}{r} \sin \theta

                          E=\frac{2 k \lambda 1}{r}

                          E=\frac{2 k \theta}{L r}

                    \text { But } \mathrm{L}=\pi r

                            r=\frac{L}{\pi}

                           E=\frac{2 k \theta}{L \frac{L}{\pi}}

                           E=\frac{2 k \pi \theta}{L^{2}}

                           E=\frac{\pi \theta}{L^{2}} \frac{2}{4 \pi \varepsilon_{0}}

                          E=\frac{\theta}{2 \varepsilon_{0} L^{2}}

Thus, the magnitude of electric field is, E=\frac{\theta}{2 \varepsilon_{0} L^{2}} .

Attachments:
Similar questions