Math, asked by tushar3051, 9 months ago

Rohit got profit of 23/2 by selling his old car. however he realized that had he sold it for ₹8100 more his profit would be 38.5 percent. at what price did he buy the car​

Answers

Answered by mddilshad11ab
81

\huge{\underline{\purple{\rm{Solution:}}}}

\small{\underline{\red{\rm{Let:}}}}

  • \rm{The\:cost\: price\:car\:be\:x}

\small{\underline{\red{\rm{To\: Find:}}}}

  • \rm{\implies The\: cost\: price\:of\:car}

\small{\underline{\red{\rm{Given\:in\:1st\: Case:}}}}

  • \rm{The\: profit\:on\: selling\:car=11.5\%}

\rm\purple{\implies SP=\dfrac{100+G\%}{100}*CP}

\rm{\implies SP=\dfrac{100+11.5}{100}*x}

\rm{\implies SP=\dfrac{111.5}{100}*x}

\rm{\implies SP=\dfrac{111.5x}{100}}

  • \rm{The\:car\:was\:sold\:Rs.8100\:more}

\rm\green{\implies SP=\dfrac{111.5x}{100}+8100}

\small{\underline{\red{\rm{Given\:in\:2nd\: Case:}}}}

  • \rm{The\: profit\:on\: selling\:car=38.5\%}

\rm{\implies SP=\dfrac{100+38.5}{100}*x}

\rm{\implies SP=\dfrac{138.5}{100}*x}

\rm\green{\implies SP=\dfrac{138.5x}{100}}

  • \rm{Now, \:according\:to\: above\: information}

\rm{\implies \dfrac{138.5x}{100}=\dfrac{111.5x}{100}+8100}

\rm{\implies \dfrac{138.5x}{100}-\dfrac{111.5x}{100}=8100}

\rm{\implies \dfrac{138.5x-111.5x}{100}=8100}

\rm{\implies \dfrac{138.5x-111.5x}{100}=8100}

\rm{\implies \dfrac{27x}{100}=8100}

\rm{\implies \cancel{27}x=\cancel{8100}*100}

\rm{\implies x=300*100}

\rm\purple{\implies x=Rs.30000}

Hence,

\rm\orange{\implies The\: cost\: price\:of\:car=Rs.30000}

Similar questions