Role of simple sequence repeat markers in the study of genetic diversity in relation to crop imporovement
Answers
Diversity in plant genetic resources (PGR) provides opportunity for plant breeders to develop new and improved cultivars with desirable characteristics, which include both farmer-preferred traits (yield potential and large seed, etc.) and breeders preferred traits (pest and disease resistance and photosensitivity, etc.). From the very beginning of agriculture, natural genetic variability has been exploited within crop species to meet subsistence food requirement, and now it is being focused to surplus food for growing populations. In the middle of 1960s developing countries like India experienced the green revolution by meeting food demand with help of high-yielding and fertilizer responsive dwarf hybrids/varieties especially in wheat and rice (Figure 1). These prolonged activities that lead to the huge coverage of single genetic cultivars (boom) made situation again worse in other forms such as genetic erosion (loss of genetic diversity) and extinction of primitive and adaptive genes (loss of landraces). Today with an advancement of agricultural and allied science and technology, we still ask ourselves whether we can feed the world in 2050; this question was recently sensitized at the world food prize event in 2014 and remains that unanswered in every one hands since global population will exceed 9 billion in 2050. The per capita availability of food and water will become worse year after year coping with the undesirable climate change. Therefore, it becomes more important to look at the agriculture not only as a food-producing machine, but also as an important source of livelihood generation both in the farm and nonfarm sectors. Keeping the reservoir for cultivated and cultivable crops species is a principle for future agriculture, just like keeping a museum of cultural and spiritual specialty of diverse civilized humans in various geography for their historical evidence for future. The former can play a very important role in providing adaptive and productive genes, thus leading to long-term increases in food productivity which is further associated with environmental detriment. This paper will indicate the significance of genetic conservation and its analytical tools and techniques that are made widely available for utilization in postgenomic era. Plant and animal breeders introduced desirable genes and eliminated undesirable ones slowly, altering in the process of underlying heredity principle for several decades [1]. With the advent of new biotechnological tools and techniques, this process of genetic manipulation is being accelerated and it shortened the breeding cycles, and it can be carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques.