Math, asked by srivatsavarshini, 1 year ago

Root (1-cosA/1+cosA)+root( 1+cosA/ 1-cosA)=2cosecA

Answers

Answered by adee1729
43
√[(1-cosA)²/(1-cos²A)] + √[(1+cosA)²/(1-cos²A)],

√[(1-cosA)²/sin²A] + √[(1+cosA)²/(sin²A)],

(1-cosA)/sinA + (1+cosA)/sinA,

(1-cosA+1+cosA)/sinA,

2/sinA,

2cosecA
Answered by Anonymous
36

 \huge \mathfrak \red {ANSWER}

________________________

 \sqrt{ \frac{1 +  \cos(a) }{1 -  \cos(a) } }  +  \sqrt{ \frac{1 -  \cos(a) }{1 +  \cos(a) } } \\  \\    =  \sqrt{ \frac{1 +  \cos(a) (1 +  \cos(a) )}{(1 -  \cos( a) )(1  + c \cos(a) )} }  +  \sqrt{ \frac{1 -  \cos(a) (1 -  \cos(a) )}{(1 +  \cos(a) )(1 -  \cos(a) )} }  \\  \\   =  \sqrt{ \frac{ {(1 +  \cos(a) )}^{2} }{ {1}^{2}  +  {( \cos(a) )}^{2} } }  +  \sqrt{ \frac{ {(1 -  \cos(a) }^{2} }{ {1}^{2}  +  { (\cos(a)) }^{2} } }  \\  \\  =  \sqrt{ \frac{ {(1 +  \cos(a))  }^{2}  +  {(1 -  \cos(a) )}^{2} }{  { \sin(a) }^{2}  } }  \\  \\   = \frac{1 + \cos(a)  + 1 -  \cos(a)  }{ \sin(a) }  \\  \\  =  \frac{2}{ \sin(a) }  \\  \\  = 2 \times  \frac{1}{ \sin(a) }  \\  \\  = 2 \times  cosec(a)  \\  \\  = 2 \: cosec(a)

___________________

@REVOLVER_RANI

Similar questions