root 1+sinA/1-sinA = secA +tanA
Answers
Answered by
7
Answer:
Step-by-step explanation:
√ (1 + SinA/1 - SinA)
//multiply numerator and denominator by 1 - SinA
=> √ [(1 + SinA/1 - SinA) * (1 + SinA/1 - SinA)
=> √ [ (1 + SinA)²/ (1 - SinA)(1 + SinA)]
=> √ [ (1 + SinA)²/ (1 - Sin²A)] (∵ In denominator (a + b)(a-b) = a² - b²)
=> √ [ (1 + SinA)²/Cos²A] (∵ 1 - Sin²A = Cos²A)
=> 1 + SinA / CosA
=> 1/CosA + SinA/CosA
=> SecA + TanA
= R.H.S
Hence proved.
Similar questions