Math, asked by rohitvashishat75, 11 months ago

(root 2+1 upon root 2-1)-( root 2-1 upon root 2+1)

Answers

Answered by kilarusaikiran
0

Answer:

2/root3

Step-by-step explanation:

(root 2+1 upon 2-1)-(root2-1 upon root 2+1)

root 2+1=root 3/2-1 - root 1 upon 3

Answered by Sudhir1188
8

ANSWER:

  • The value of above expression = 4√2

GIVEN:

 \frac{ \sqrt{2}  + 1}{ \sqrt{2} - 1 }  -  \frac{ \sqrt{2}  - 1}{ \sqrt{2} + 1 }

TO FIND:

  • The value of above expression.

SOLUTION:

 =  \frac{ \sqrt{2}  + 1}{ \sqrt{2} - 1 }  -  \frac{ \sqrt{2}  - 1}{ \sqrt{2} + 1 }  \\ \\   =  \frac{( \sqrt{2}  + 1)( \sqrt{2}  + 1)}{ (\sqrt{2}  - 1)( \sqrt{2}  + 1)}  - \frac{( \sqrt{2}   -  1)( \sqrt{2}   -  1)}{ (\sqrt{2}   +  1)( \sqrt{2}   -  1)}  \\ \\   =  \frac{( \sqrt{2}  + 1) {}^{2} }{( \sqrt{2}) {}^{2}   - 1 {}^{2} }  - \frac{( \sqrt{2}   -  1) {}^{2} }{( \sqrt{2}) {}^{2}   - 1 {}^{2} }  \:  \\  \\  =  \frac{( \sqrt{2} ) {}^{2}  + 1 {}^{2} + 2 \times  \sqrt{2}  \times 1 }{2 - 1}  -  \frac{( \sqrt{2} ) {}^{2}  + 1 {}^{2}  - 2 \times  \sqrt{2}  \times 1 }{2 - 1}  \: \\  \\  = 2 + 1 + 2 \sqrt{2}  - (2 + 1 - 2 \sqrt{2} ) \\  \\  = 3 + 2 \sqrt{2}  - 3 + 2 \sqrt{2}  \\  \\  = 4 \sqrt{2}

The value of above expression = 4√2

NOTE:

  • Firstly in rationalization we have to remove the root from the the denominator.
  • In order to remove the square root from the denominator we have to multiply with numbers such that the denominator root get removed.
Similar questions