Math, asked by thakarman2262, 11 months ago

root 2 + 21 is an irrational number or not​

Answers

Answered by johrianiket04
4

Answer:

Step-by-step explanation:

Yes it is an irrational number.

Answered by sagarmankoti
6

 \sqrt{2}  + 21 \: is \: irrational.

 \\  \mathsf{\underline{Let's \: prove \: this} :  } \\ Let \: us \: assume \: tote \: contrary \: that \:  \sqrt{2}  + 21 \: is \: rational. \\ So, \:  \sqrt{2}  + 21 =  \frac{a}{b}  \:  \:  \:  \:  \:  \:  |  \: where \: a \: and \: b \: are \: coprime. \\  =  > \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \sqrt{2}  =  \frac{a}{b}  - 21 \\  =  >  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sqrt{2}  =  \frac{a - 21b}{b}   \\ \\  \frac{a - 21b}{b}  \: is \: rational \: so \:  \sqrt{2}  \: is \: rational. \\ But \: this \: contradicts \: the \: fact \: that \:  \sqrt{2 } is \: irrational. \\  \:  \:  \:  \:  \:  \:  This \: contradiction \: has \: arisen \: due \: to \: our \: incorrect \:  \\ assumption \: that \:  \sqrt{2}  + 21 \: is \: irrational. \\  \\ So, \: we \: conclude \: that \:  \sqrt{2}  + 21 \: is \: irrational. \\  \\ \mathsf{Hence \: proved.}

Similar questions