root 2+root 3 is a rational prove
Answers
Answered by
0
Suppose √3 - √2 is rational .
Let √3 - √2 = r where r is a rational.
∴ (√3 - √2)2 = r2
∴ 2 + 3 - 2√6 = r2 ∴√6 = (5 - r2 ) / 2
Now , LHS = √6 is an irrational number .
RHS = (5 - r2 ) / 2 But rational number cannot be equal to an irrational.
∴our supposition is wrong.
∴ √3 - √2 is irrational .
I hope this helps you.
BE BRAINLY
Let √3 - √2 = r where r is a rational.
∴ (√3 - √2)2 = r2
∴ 2 + 3 - 2√6 = r2 ∴√6 = (5 - r2 ) / 2
Now , LHS = √6 is an irrational number .
RHS = (5 - r2 ) / 2 But rational number cannot be equal to an irrational.
∴our supposition is wrong.
∴ √3 - √2 is irrational .
I hope this helps you.
BE BRAINLY
Similar questions