Math, asked by thank5703, 17 days ago

(root-3root-b) is equal to

Answers

Answered by kirankumar40459
0

Answer:

Answer:

(a+b+c)^3=27abc(a+b+c)

3

=27abc

Step-by-step explanation:

Formula used:

if x+y+z=0 then x^3+y^3+z^3=3xyzx

3

+y

3

+z

3

=3xyz

Given:

\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=0

3

a

+

3

b

+

3

c

=0

From the above formula

(\sqrt[3]{a})^3+(\sqrt[3]{b})^3+(\sqrt[3]{c})^3=3\sqrt[3]{a}\sqrt[3]{b}\sqrt[3]{c}(

3

a

)

3

+(

3

b

)

3

+(

3

c

)

3

=3

3

a

3

b

3

c

a+b+c=3\sqrt[3]{a}\sqrt[3]{b}\sqrt[3]{c}a+b+c=3

3

a

3

b

3

c

Now,

(a+b+c)^3=(3\sqrt[3]{a}\sqrt[3]{b}\sqrt[3]{c})^3(a+b+c)

3

=(3

3

a

3

b

3

c

)

3

(a+b+c)^3=3^3(\sqrt[3]{a})^3(\sqrt[3]{b})^3(\sqrt[3]{c})^3(a+b+c)

3

=3

3

(

3

a

)

3

(

3

b

)

3

(

3

c

)

3

(a+b+c)^3=27abc(a+b+c)

3

=27abc

Similar questions