Math, asked by dildeepbhullar193, 10 months ago

root 7 x square - 6 x - 13 root 7 is equals to zero​

Answers

Answered by codiepienagoya
0

The final answer: 13√3/7 and -√7

Step-by-step explanation:

\ Given \ value:\\\\\sqrt{7}x^2-6x-13\sqrt{7} =0\\\\\ Solution:\\\\\sqrt{7}x^2-6x-13\sqrt{7} =0\\\\\rightarrow \sqrt{7}x^2-(13-7)x-13\sqrt{7} =0\\\\\rightarrow \sqrt{7}x^2-13x+7x-13\sqrt{7} =0\\\\\rightarrow x(\sqrt{7}x-13)+\sqrt{7}(\sqrt{7}x-13)=0\\\\\rightarrow (\sqrt{7}x-13)(x+\sqrt{7})=0\\\\\rightarrow (\sqrt{7}x-13) = 0 \ and \ (x+\sqrt{7})=0\\\\

\sqrt{7}x=13 \ and \ x= -\sqrt{7} \\\\x= \frac{13}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} \\\\x= \frac{13\sqrt{7}}{7} \ and  -\sqrt{7} \\\\

Learn more:

  • Simplify: https://brainly.in/question/8913062
Answered by harrypandit108
0

Answer:

and -√7

Step-by-step explanation:

\begin{lgathered}\ Given \ value:\\\\\sqrt{7}x^2-6x-13\sqrt{7} =0\\\\\ Solution:\\\\\sqrt{7}x^2-6x-13\sqrt{7} =0\\\\\rightarrow \sqrt{7}x^2-(13-7)x-13\sqrt{7} =0\\\\\rightarrow \sqrt{7}x^2-13x+7x-13\sqrt{7} =0\\\\\rightarrow x(\sqrt{7}x-13)+\sqrt{7}(\sqrt{7}x-13)=0\\\\\rightarrow (\sqrt{7}x-13)(x+\sqrt{7})=0\\\\\rightarrow (\sqrt{7}x-13) = 0 \ and \ (x+\sqrt{7})=0\\\\\end{lgathered}

Given value:

7

x

2

−6x−13

7

=0

Solution:

7

x

2

−6x−13

7

=0

7

x

2

−(13−7)x−13

7

=0

7

x

2

−13x+7x−13

7

=0

→x(

7

x−13)+

7

(

7

x−13)=0

→(

7

x−13)(x+

7

)=0

→(

7

x−13)=0 and (x+

7

)=0

\begin{lgathered}\sqrt{7}x=13 \ and \ x= -\sqrt{7} \\\\x= \frac{13}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} \\\\x= \frac{13\sqrt{7}}{7} \ and -\sqrt{7} \\\\\end{lgathered}

7

x=13 and x=−

7

x=

7

13

×

7

7

x=

7

13

7

and−

7

Similar questions