Math, asked by scera8736, 9 months ago

root (sec2θ+cosec2θ)=tanθ+cotθ

Answers

Answered by rajeevr06
1

Answer:

LHS

 \sqrt{ \sec(2 \alpha ) +  \csc(2 \alpha )  }  =  \sqrt{ \frac{1}{ \cos( 2\alpha )  } +  \frac{1}{ \sin( 2\alpha ) }  }  =

we know that

 \sin(2 \alpha )  =  \frac{2 \tan( \alpha ) }{1  +   \tan {}^{2} ( \alpha ) }  \:  \:  and \:  \:  \:  \:  \:  \:  \:   \cos(2 \alpha )  =  \frac{1 -  \tan {}^{2} ( \alpha ) }{1 +  \tan {}^{2} ( \alpha ) }

so from above

 \sqrt{ \frac{1 +  \tan {}^{2} ( \alpha ) }{1 -  \tan {}^{2} ( \alpha )  } +  \frac{1 +  \tan {}^{2} ( \alpha ) }{2 \tan( \alpha ) }  }  =

 \sqrt{1 +  \tan {}^{2} ( \alpha ) } \sqrt{ \frac{2 \tan( \alpha )  + 1 -  \tan {}^{2} ( \alpha ) }{2 \tan( \alpha ) (1 -  \tan {}^{2} ( \alpha )) } }   =

Similar questions