Math, asked by meham5195, 11 months ago

root3 + root2 by root3 - root2 = a+b root6

Answers

Answered by LovelyG
12

Answer:

\large{\underline{\boxed{\sf a = 5 \: \:and \: \: b = 2}}}

Step-by-step explanation:

Given that ;

\sf \dfrac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} } = a + b \sqrt{6}

Consider LHS,

\sf \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} } \\ \\ \sf \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} } \times \frac{ \sqrt{3} + \sqrt{2}}{ \sqrt{3} + \sqrt{2} } \\ \\ \sf \frac{( \sqrt{3} + \sqrt{2} ) {}^{2} }{( \sqrt{3})^{2} - (\sqrt{2}) {}^{2} } \\ \\ \sf \frac{( \sqrt{3}) {}^{2} + 2 \times \sqrt{3} \times \sqrt{2} + ( \sqrt{2} ) {}^{2} }{3 - 2} \\ \\ \sf \frac{3 + 2 \sqrt{6} + 2}{1} \\ \\ \sf 5 + 2 \sqrt{6}

On comparing LHS with RHS,

\sf 5 + 2 \sqrt{6} = a + b \sqrt{6}

We get;

  • a = 5
  • b = 2

Hence, the value of a and b is 5 and 2 respectively.

Answered by Anonymous
12

Given:-

 \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  = a + b \sqrt{6}

Answer:-

a = 5

b = 2

Now, solving L. H. S

we get,

 =  \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \times  \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }

Using suitable identity,

\boxed{\sf{  (a + b)(a - b) =  {a}^{2}  -  {b}^{2} }}

 =  \dfrac{( \sqrt{3} +  \sqrt{2} ) ^{2}  }{ ({ \sqrt{3} })^{2}  - (\sqrt{2})^{2}  }

 =  \dfrac{( \sqrt{3})^{2}   +   { (\sqrt{2}) }^{2}  + 2. \sqrt{3}  . \sqrt{2} }{ {( \sqrt{3}) }^{2}  -  { (\sqrt{2}) }^{2} }

 =  \dfrac{3 + 2 + 2 \sqrt{6} }{3 - 2}

 =  \dfrac{5 + 2 \sqrt{6} }{1}

 = 5 + 2 \sqrt{6}

Now , compare with R. H. S

5 + 2 \sqrt{6}  = a + b \sqrt{6}

we get,

a = 5 \:  \:  \:  \: b \:  = 2

Similar questions