Roots of the equation
x²+13x+36=0 are
Answers
Answered by
1
Answer:
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
2
+
1
3
+
3
6
=
0
x^{2}+13x+36=0
x2+13x+36=0
=
1
a={\color{#c92786}{1}}
a=1
=
1
3
b={\color{#e8710a}{13}}
b=13
=
3
6
c={\color{#129eaf}{36}}
c=36
=
−
1
3
±
1
3
2
−
4
⋅
1
⋅
3
6
√
2
⋅
1
x=\frac{-{\color{#e8710a}{13}} \pm \sqrt{{\color{#e8710a}{13}}^{2}-4 \cdot {\color{#c92786}{1}} \cdot {\color{#129eaf}{36}}}}{2 \cdot {\color{#c92786}{1}}}
x=2⋅1−13±132−4⋅1⋅36
2
Answered by
1
Answer:
x=-4 and x=-9
Step-by-step explanation:
x²+ 13x+36
=x²+9x+4x+36
=x(x+9)+4(x+9)
=(x+4)(x+9)
=x+4=0 and x+9=0
=x=-4 and x=-9
Similar questions