Math, asked by RajRanjan1247, 11 months ago

rs agg ex 13 A TRIGONOMETRIC IDENTITIES​

Attachments:

Answers

Answered by Anonymous
9

Question :-

prove :

 \frac{1}{ 1 + \sin \theta}  +  \frac{1}{1 -  \sin \theta}  = 2 { \sec}^{2}  \theta. \\

Step-by-step explanation :-

Solving LHS ,

 \sf =  \frac{1}{ 1 + \sin \theta}  +  \frac{1}{1 -  \sin \theta} . \\  \\  \sf =  \frac{(1 -  \sin \theta) + (1 +  \sin \theta)}{(1 -  \sin \theta) (1 +  \sin \theta)} . \\  \\  \sf =  \frac{1 -  \cancel{ \sin \theta}+ 1 +   \cancel{\sin \theta}}{1 -  { \sin}^{2} \theta } . \\  \\   \sf=  \frac{2}{ { \cos}^{2}  \theta} . \\  \\  \huge \pink{\boxed{ \it = 2 { \sec}^{2}  \theta.}}

LHS = RHS .

Hence, it is proved .


RajRanjan1247: text smjh me nhi aa rha h!
Anonymous: how? it's so clearly visible.
RajRanjan1247: rs agg ex 13 A TRIGONOMETRIC IDENTITIES​
https://brainly.in/question/9752144?utm_source=android&utm_medium=share&utm_campaign=question
Answered by brainliann
8

Answer

2sec²θ

STEPS

1/+sinθ1 + 1/−sinθ1 =2sec 2θ

Time to prove LHS

\begin{lgathered}\sf = \frac{1}{ 1 + \sin \theta} + \frac{1}{1 - \sin \theta} \\ \\ \sf = \frac{(1 - \sin \theta) + (1 + \sin \theta)}{(1 - \sin \theta) (1 + \sin \theta)}\\ \\ \sf = \frac{1 - \cancel{ \sin \theta}+ 1 + \cancel{\sin \theta}}{1 - { \sin}^{2} \theta }  \\ \\ \sf= \frac{2}{ { \cos}^{2} \theta}  \\ \\ \huge \red{\boxed{ \it = 2 { \sec}^{2} \theta}}\end{lgathered}

\huge \red{\boxed{ \Hence Proved( LHS=RHS) }}\end{lgathered}

Similar questions