Math, asked by rahulraj620192, 4 months ago

RS Aggarwal Exercise 10 , Question no.7​

Attachments:

Answers

Answered by Anonymous
1

 \sf \sin\theta \:  =  \dfrac{c}{ \sqrt{ {c}^{2}  +  {d}^{2} } }  \\  \\   \gray{\sf {we \: know \: the \: formula,}} \\  \\  \boxed{  \gray{\underline{ \sf{ {cos}^{2}  \theta = 1 -  {sin}^{2}  \theta }}}} \\  \\  \sf \:  {cos}^{2}   \theta = 1 - ( \frac{c}{ \sqrt{ {c}^{2}  +  {d}^{2} } } ) ^{2}  \\  \\  \sf \:  {cos}^{2}   \theta = 1 -  \frac{ {c}^{2} }{ {c}^{2}  +  {d}^{2} }  \\  \\  \sf \:  {cos}^{2}   \theta =  \frac{  \cancel{{c}^{2} }+  {d}^{2}   -   \cancel{{c}^{2} }}{ { {c}^{2} +  {d}^{2} }}  \\  \\ \sf  {cos} ^{2}  \theta =   \frac{ {d}^{2} }{ {c}^{2}  +  {d}^{2} }  \\  \\  \sf \: cos \theta =  \sqrt{ \frac{ {d}^{2} }{ {c}^{2}  +  {d}^{2} } }  \\  \\  \boxed{ \red{ \sf \: cos\theta =  \frac{d}{ \sqrt{ {c}^{2} +   {d}^{2}  } } }} \\  \\  \\  \gray{ \sf{we \: know \: the \: formula,}} \\  \boxed{ \gray{ \underline{ \sf{tan\theta  =  \frac{sin\theta }{cos\theta } }}}} \\  \\  \sf \: tan\theta  =  \dfrac{ \dfrac{c}{ \sqrt{ {c}^{2} +  {d}^{2}  } } }{ \dfrac{d}{ \sqrt{ {c}^{2} +  {d}^{2}  } } }  \\  \\  \sf \: tan\theta  =  \dfrac{ \dfrac{c}{  \cancel{\sqrt{ {c}^{2} +  {d}^{2} } } } }{ \dfrac{d}{ \cancel{ \sqrt{ {c}^{2} +  {d}^{2}  } } }} \\  \\   \boxed{ \red{\sf \: tan \theta =  \frac{c}{d} }}

Similar questions