Math, asked by teddycoyle37, 4 months ago

s is inversely proportional to t . When s = 0.8 , t = 7 Work out s when t = 0.5

Answers

Answered by TheWonderWall
7

\large\sf\underline{➪\:Given}

\sf\:s\:∝\frac{1}{t}

\sf\:s\:=\frac{k}{t}-------(i)

  • where k = constant of proportionality

\large\sf\underline{➪\:To\:find}

  • s

\large\sf\underline{➪\:Solution}

\sf\:When\:s=0.8\:and\:t=7\:lets\:find\:k

\sf⇒\:s\:=\frac{k}{t}

\sf⇒\:0.8\:=\frac{k}{7}

\sf⇒\:0.8\:=\frac{k}{7}

\sf⇒\:k\:=0.8 \times 7

\sf⇒\:k\:=\frac{8}{10} \times 7

\sf⇒\:k=\frac{56}{10}

\sf⇒\:k=5.6

\large\fbox\red{✰\:k\:=5.6}

\sf\:So\:now\:when\:t=0.5,\:k=5.6\:lets\:find\:s

\sf⇒\:s\:=\frac{k}{t}[from \:(i)]

\sf⇒\:s\:=\frac{5.6}{0.5}

\sf⇒\:s\:=\frac{56 \times 10}{5 \times 10}

\sf⇒\:s\:=\frac{560}{50}

\sf⇒\:s\:=\frac{56}{5}

\sf⇒\:s\:=11.2

\large\fbox\red{✰\:s\:=11.2}

  • Thnku ❣
Similar questions
Math, 2 months ago