Math, asked by dm1109440, 1 year ago

S-T=3 S/3+T/2=6 any body can solve this​

Attachments:

Anonymous: ___k off

Answers

Answered by GovindRavi
1

S - T = 3 ---- ( i ) and S / 3 + T /2 = 6 ---- ( ii )

On multiplying ( ii ) by 6 , we get

6 × S / 3 + 6 × T / 2 = 6 × 6

=> 2S + 3T = 36 ---- ( iii )

from ( i ) , S = 3 + T ---- ( iv ) , putting the value of S in eq. ( iii ) gives

2 ( 3 + T ) + 3T = 36

=> 6 + 2T + 3T = 36

=> 5T = 30

=> T = 6 , On putting in eq. ( iv ) gives

S = 3 + 6 = 9

Thus , S = 9 and T = 6


dm1109440: right answer bro...
GovindRavi: welcome...
Answered by Anonymous
23

Answer:-

\boxed{\sf{s=9}}\;or\;\boxed{\sf{t=6}}

{\bf{\underline{Given:-}}}

\sf{s-t=3\;\;\;\;\;\;\;\;......(eq-1)}\\ \\ \sf{\frac{s}{3}+\frac{t}{2}=6\;\;\;\;\;\;.......(eq-2)}

{\bf{\underline{Solution:-}}}

\sf{As\;s-t=3}

\sf{\implies s = t+3}

\sf{Subsituting\;the\;value\;of\;s\;in\;equation\;(2),}

\sf{\implies \frac{s}{3}+\frac{t}{2}=6}

\sf{\implies \frac{(t+3)}{3}+\frac{t}{2}=6}

\sf{\implies \frac{t}{3}+\frac{3}{3}+\frac{t}{2}=6}

\sf{\implies \frac{t}{3}+\frac{t}{2}+1=6}

\sf{\implies \frac{3t-2t}{6}=6-1}

\sf{\implies \frac{5t}{6}=5}

\sf{\implies 5t = 30}

\sf{\implies t = \frac{30}{5}=6}

\sf{Therefore,\;t=6}

\sf{Put\;the\;value\;of\;t\;in\;equation\;(1)}

\sf{\implies s-t=3}

\sf{\implies s-6=3}

\sf{\implies s=9}

\sf{Therefore\;s=9\;and\;t=6}


Anonymous: ..
nanudhull464: hlo ji
nanudhull464: hlo
nanudhull464: hlo ji
nanudhull464: hlo
Similar questions