Math, asked by BrainlyHelper, 1 year ago

सिद्ध कीजिए कि किसी बाह्य बिंदु से किसी वृत्त पर खींची गई स्पर्श रेखाओं के बीच का कोण स्पर्श बिंदुओं को मिलाने वाले रेखाखंड द्वारा केंद्र पर अंतरित कोण का संपूरक होता है।

Answers

Answered by abhi178
36
माना कि O केन्द्र वाला एक वृत्त है, माना कि इस वृत्त के बाहर के बिन्दु P है, जिससे वृत पर दो स्पर्श रेखाएँ PQ और PR खींची गई हैं। स्पर्श रेखा PQ वृत के Q बिन्दु को स्पर्श करता है, तथा स्पर्श रेखा PR वृत्त को R बिन्दु पर स्पर्श करता है।

हमें सिद्ध करना है कि , ∠ QPR +∠ ROQ = 180°

अब, Q तथा R को मिलाया गया ।

अत:, QR रेखाखंड है जो कि वृत्त के केन्द्र O पर ∠ POQ बनाता है।

अब चित्र के यह स्पष्ट है कि त्रिज्या OQ ⊥ PQ (स्पर्श रेखा)

∴ ∠ OQP = 90°

उसी तरह, त्रिज्या OR ⊥ PR (स्पर्श रेखा)

∴ ∠ ORP = 90°

अब, चतुर्भुज OQPR में,

आंतरिक कोणों का योग = 360°

⇒ ∠ OQP + ∠ QPR + ∠ PRO + ∠ ROQ = 360°

⇒ 90° + ∠ QPR + 90° + ∠ ROQ = 360°

⇒ 180° + ∠ QPR + ∠ ROQ = 360°

⇒ ∠ QPR + ∠ ROQ = 360° – 180°

⇒ ∠ QPR +∠ ROQ = 180°

अर्थात किसी बाह्य बिन्दु से किसी वृत्त पर खींची गई स्पर्श रेखाओं के बीच का कोण स्पर्श बिन्दुओं को मिलाने वाले रेखाखंड द्वारा केन्द्र पर अंतरिम कोण का संपूरक होता है। 
Attachments:
Answered by manishmanish93268
4

Answer:

answers please find the attached resume for

Similar questions