Math, asked by nisreensabir8729, 11 months ago

सिद्ध कीजिए कि (sin A – cos A)² + 2 sin A cos A = 1

Answers

Answered by Anonymous
4

Step-by-step explanation:

(SinA-CosA)² + 2SinA*CosA

(Sin²A + Cos²A - 2SinA*CosA) + 2SinA*CosA

Sin²A + Cos²A = 1

Answered by kaushik05
28

 \red{  \huge\mathfrak{solution}}

To prove :

  \green{ \boxed {{(sin \theta - cos \theta)}^{2}   + 2sin \theta \: cos \theta = 1}}

LHS

 \implies \: ( {sin \theta - cos \theta)}^{2}   + 2 \: sin \theta \: cos \theta\\  \\  \implies \:  {sin}^{2}  \theta \:   +  {cos}^{2}  \theta \:  - 2sin \theta  \: cos \theta \:  + 2 sin \theta cos \theta \\  \\   \implies \: 1 - 2sin \theta \:cos \theta \:  + 2sin \theta \: cos  \theta \\  \\  \implies 1 \cancel { - 2sin \theta \: cos \theta}  \cancel{ + 2sin \theta cos \theta} \\  \\  \implies \: 1

LHS = RHS

 \huge \boxed{ \purple{ \bold{proved}}}

Formula used :

 \huge \boxed{ \blue{ \bold{{sin}^{2}  \theta +  {cos}^{2}  \theta = 1}}}

 \boxed{ \red{ \bold{ {(x - y)}^{2}  \times  {x}^{2}  +  {y}^{2}  - 2xy}}}

Similar questions