Math, asked by PragyaTbia, 1 year ago

सिद्ध कीजिए: 2\sin^2 \dfrac {\pi}{6} + cosec^2 \dfrac{7\pi}{6} \cos^2 \dfrac{\pi}{3} = \dfrac{3}{2}

Answers

Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

2sin^{2}\frac{\pi }{6} + cosec^{2}\frac{7\pi }{6} cos^{2}\frac{\pi }{3}=3/2

L.H.S.

   = 2sin^{2}\frac{\pi }{6} + cosec^{2}\frac{7\pi }{6} cos^{2}\frac{\pi }{3}

   = 2sin^{2}\frac{\pi }{6} + cosec^{2}(\pi +\frac{\pi}{6}) cos^{2}\frac{\pi }{3}\\\\=2sin^{2}\frac{\pi }{6} + (-cosec\frac{\pi }{6} )^{2} . cos^{2}\frac{\pi }{3} \\\\= 2sin^{2}\frac{\pi }{6} + cosec^{2}\frac{\pi }{6} . cos^{2}\frac{\pi }{3}\\\\

  =  2 sin^{2} 30' + cosec^{2} 30' . cos^{2} 60'

  =  2. (\frac{1}{2}) ^{2} + (2^{2}) . (\frac{1}{2}) ^{2}

  =  2×\frac{1}{4}+4*\frac{1}{4}

  =  \frac{1}{2} +1= \frac{3}{2}

  =  R.H.S.

Similar questions