Math, asked by patidardheeraj2005, 6 months ago

सिद्ध कीजिये कि (cos7x+cos5)/(sin7x-sin5)=cot x​

Answers

Answered by MaheswariS
0

\underline{\textsf{To prove:}}

\mathsf{\dfrac{cos7x+cos5x}{sin7x-sin5x}=cotx}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{cos7x+cos5x}{sin7x-sin5x}}

\mathsf{Using\;the\;following\;identities}

\boxed{\mathsf{cosC+cosD=2\,cos\left(\dfrac{C+D}{2}\right)\,cos\left(\dfrac{C-D}{2}\right)}}

\boxed{\mathsf{sinC-sinD=2\,cos\left(\dfrac{C+D}{2}\right)\,sin\left(\dfrac{C-D}{2}\right)}}

\mathsf{=\dfrac{2\,cos\left(\dfrac{7x+5x}{2}\right)\,cos\left(\dfrac{7x-5x}{2}\right)}{2\,cos\left(\dfrac{7x+5x}{2}\right)\,sin\left(\dfrac{7x-5x}{2}\right)}}

\mathsf{=\dfrac{2\,cos\left(\dfrac{12x}{2}\right)\,cos\left(\dfrac{2x}{2}\right)}{2\,cos\left(\dfrac{12x}{2}\right)\,sin\left(\dfrac{2x}{2}\right)}}

\mathsf{=\dfrac{2\,cos6x\,cosx}{2\,cos6x\,sinx}}

\mathsf{=\dfrac{cosx}{sinx}}

\mathsf{=cotx}

\implies\boxed{\mathsf{\dfrac{cos7x+cos5x}{sin7x-sin5x}=cotx}}

\underline{\textsf{Find more:}}

Prove that 1-sin^2x/1+cotx-cos^2x/1+tanx=sinxcossx

https://brainly.in/question/4927186

Tan(π/4+x)-tan(π/4-x)=2tan 2x

https://brainly.in/question/10999329

How to prove the following:

1+sin2A/1-sin2A=(cotA+1/cotA-1)2

https://brainly.in/question/24156755

Similar questions