Math, asked by vasishtagoutham, 9 months ago

say answer to this question​

Attachments:

Answers

Answered by Anonymous
20

 \pink{\large{\underline{\underline{ \rm{Solution }}}}}

 \dfrac{ \sin70 \degree  -  \cos40 \degree }{ \cos50 \degree  -  \sin20 \degree  }

 \dfrac{ \sin70 \degree  -  \sin50 \degree  }{ \cos50 \degree -  \cos70 \degree }

  \dfrac{ \sin(60 + 10) -  \sin(60 - 10) }{ \cos(60 - 10) -  \cos(60  + 10)  }

 \dfrac{ \sin60 \cos10  \: +  \:  \cos60 \sin10 \:  -  \: \sin60 \cos10 \:  + \:  \cos60 \sin10   }{ \cos60 \cos10 \:  +  \:  \sin60\sin10 \:   -  \: \cos60 \cos10 \:  +  \:  \sin60 \sin 10}

 \dfrac{ 2  \: \cos60  \sin10} {2 \:  \sin60   \sin10 }

On cutting and Solving, we have:

 \dfrac{ \cos60\degree }{ \sin60\degree }

We know,

Cos 60° =  \dfrac{1}{2}

Sin 60° =  \dfrac{ \sqrt{3} }{2}

Substituting the values, we have:

 \dfrac{ \dfrac{1}{2} }{ \dfrac{ \sqrt{3} }{2} }

 \dfrac{1}{2}  \times  \dfrac{2}{ \sqrt{3} }

 \green  { \underline{ \boxed {   \frac{1}{ \sqrt{3} }}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions