Math, asked by yakannathokala, 5 months ago

say the answer with step by step explanation​

Attachments:

Answers

Answered by shailjaasana
1

Step-by-step explanation:

√1+cos theta / 1-cos theta * √1+cos theta / 1+cos theta

√ (1+cos theta)^2/ 1- cos ^2 theta

√(1+cos theta)^2/ sin ^2 theta

1+ cos theta / sin theta

1/ sin theta + cos theta / sin theta

cosec theta + cot theta

Answered by anindyaadhikari13
2

Required Answer:-

Given to Prove:

 \rm \mapsto \sqrt{ \dfrac{1 +  \cos(x) }{1 -  \cos(x) } }  = cosec(x)  +  \cot(x)

Proof:

Here comes the proof.

Taking LHS,

 \rm \sqrt{ \dfrac{1 +  \cos(x) }{1 -  \cos(x) } }

 \rm  = \sqrt{ \dfrac{(1 +  \cos(x))(1 +  \cos(x)) }{(1 -  \cos(x))(1 +  \cos(x)) } }

 \rm  = \sqrt{ \dfrac{(1 +  \cos(x))(1 +  \cos(x)) }{ {(1)}^{2} -  { \cos}^{2}(x) }}

We know that,

 \rm \implies { \sin}^{2}(x) +  \cos ^{2} (x)  = 1

 \rm \implies { \sin}^{2}(x) = 1 -  \cos ^{2} (x)

Therefore,

 \rm  \sqrt{ \dfrac{(1 +  \cos(x))(1 +  \cos(x)) }{ {(1)}^{2} -  { \cos}^{2}(x) }}

 \rm =   \sqrt{ \dfrac{(1 +  \cos(x))(1 +  \cos(x)) }{ { \sin}^{2}(x) }}

 \rm =   \sqrt{ \dfrac{(1 +  \cos(x))^{2}  }{ { \sin}^{2}(x) }}

 \rm =   \sqrt{ \bigg(\dfrac{1 +  \cos(x) }{\sin(x) } \bigg)^{2} }

 \rm =   \bigg(\dfrac{1 +  \cos(x) }{\sin(x) } \bigg)

 \rm =  \dfrac{1 }{\sin(x) }  +  \dfrac{ \cos(x) }{ \sin(x) }

As we know that,

  • cosec(x) = 1/sin(x) and,
  • tan(x) = sin(x)/cos(x)

So,

 \rm  \dfrac{1 }{\sin(x) }  +  \dfrac{ \cos(x) }{ \sin(x) }

 \rm =cosec(x) +  \dfrac{1}{ \tan(x) }

Also, cot(x) = 1/tan(x), Thus,

 \rm =cosec(x) +  \cot(x)

= RHS (Hence Proved)

Similar questions