Math, asked by saraantonia1107, 6 months ago

Se consideră numerele reale:
a1, a2, ..., an, ... astfel încât a1 = 2, a2= 5, an+2 = 5an+2 - 6an, n apartine N. n>=1. Să se arate că an= 2^n + 3^n, n apartine N.
URGENT!!!DAU COROANA!!!

Answers

Answered by arnavmann77631
0

Answer:

please send it in english then iwill answer

Answered by pulakmath007
1

SOLUTION

TO SOLVE

The recurrence relation

 \sf{a_{n + 2} = 5a_{n + 1} - 6a_{n}}

With initial conditions

 \sf{a_{1} = 2 \:  \:  \: and \:  \:  \: a_{2} = 5}

EVALUATION

Here the given recurrence relation is

 \sf{a_{n + 2} = 5a_{n + 1} - 6a_{n}}

 \implies \sf{a_{n + 2} -  5a_{n + 1}  +  6a_{n} = 0}

This is a second order homogeneous difference equation with constant coefficients

The corresponding auxiliary equation is

 \sf{ {x}^{2} - 5x + 6 = 0 }

 \implies \sf{(x - 2)(x - 3) = 0}

 \implies \sf{x = 2 \:  , \: 3}

Hence there e exists constants b and c such that

 \sf{a_{n} = b. {2}^{n}  + c. {3}^{n} \:  \:  \: where \:  \: n \geqslant 1 }

Now it is given that

 \sf{a_{1} = 2 \:  \:  \: and \:  \:  \: a_{2} = 5}

Here

 \sf{a_{1} = 2 \:  \:  \: gives}

 \sf{2b + 3c = 2} \:  \:  \:  \: ......(1)

 \sf{a_{2} = 5 \:  \:  \: gives}

 \sf{4b + 9c = 5} \:  \:  \:  \: ......(2)

Equation (2) - 2 × Equation (1) gives

 \sf{3c = 1}

 \displaystyle \sf{ \implies \: c =  \frac{1}{3} }

From Equation (1) we get

 \sf{2b + 1 = 2}

 \displaystyle  \sf{ \implies \: 2b  = 1}

 \displaystyle  \sf{ \implies \: b =  \frac{1}{2} }

Hence the required recurrence relation is

 \displaystyle \:  \sf{a_{n} = \bigg(  \frac{1}{2} \times {2}^{n}  +  \frac{1}{3} \times   {3}^{n} \bigg)  \:  \:  \:  \:  \: where \:  \: n \geqslant 1 }

 \displaystyle \:  \sf{ \therefore \: \:  \:  a_{n} =  {2}^{n - 1}  +   {3}^{n - 1}  \:  \:  \:   \:  \: where \:  \: n \geqslant 1 }

FINAL ANSWER

The required recurrence relation is

 \displaystyle \:  \sf{  a_{n} =  {2}^{n - 1}  +   {3}^{n - 1}  \:  \:  \:   \:  \: where \:  \: n \geqslant 1 }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. solve the recarency relation ar-7ar-1+10ar-2=2r,a0=0,and a1=6

https://brainly.in/question/2163198

2. Solve the recurrence relation s(k)-10s(k-1)+9s(k-2)=0 with n

s(0)=3,s(1)=11.

https://brainly.in/question/23772288

Similar questions