Math, asked by swatisherla7, 3 months ago

sec 2 theta - cos2 theta = sin 2theta ( sec2theta +1 ) ​

Answers

Answered by pushkarsingh007
1

Answer:

Proved that \sec^{2}\theta - \cos^{2}\theta = \sin^{2}\theta(\sec^{2}\theta + 1 )sec

2

θ−cos

2

θ=sin

2

θ(sec

2

θ+1)

We have to prove that \sec^{2}\theta - \cos^{2}\theta = \sin^{2}\theta(\sec^{2}\theta + 1 )sec

2

θ−cos

2

θ=sin

2

θ(sec

2

θ+1)

Now, left hand side

= \sec^{2}\theta - \cos^{2}\thetasec

2

θ−cos

2

θ

= 1 + \tan^{2}\theta + \sin^{2}\theta - 11+tan

2

θ+sin

2

θ−1

{Since, we know that \sec^{2}\theta - \tan^{2}\theta = 1sec

2

θ−tan

2

θ=1 and \sin^{2}\theta + \cos^{2}\theta = 1sin

2

θ+cos

2

θ=1 }

= \tan^{2}\theta + \sin^{2}\thetatan

2

θ+sin

2

θ

= \frac{\sin^{2}\theta }{\cos^{2}\theta} + \sin^{2}\theta

cos

2

θ

sin

2

θ

+sin

2

θ

= \sin^{2}\theta[\frac{1}{\cos^{2}\theta} + 1 ]sin

2

θ[

cos

2

θ

1

+1]

= \sin^{2}\theta(\sec^{2}\theta + 1 )sin

2

θ(sec

2

θ+1)

= right hand side

Similar questions