Math, asked by HeyThere222, 3 months ago

Sec^2A. Cosec^2= tan^2A + Cot^2A + 2 Please prove it through LHS.​

Answers

Answered by utsavsinghal
1

Answer:

#LHS=tan^2A+cot^2A+2#

#=tan^2A+1+cot^2A+1#

#=sec^2A+csc^2A#

#=1/cos^2A+1/sin^2A#

#=(sin^2A+cos^2A)/(cos^2Asin^2A)#

#=1/(cos^2Asin^2A)#

#=sec^2Acsc^2A=RHS#

Answered by mrAdorableboy
4

 {sec}^{2} a \times  {cosec}^{2} a =   {tan}^{2} a +  {cot}^{2}  + 2 \\ lhs =  {sec}^{2} a  \times  {cosec}^{2} a \\  =  \frac{1}{ {cos}^{2}a }  \times  \frac{1}{ {sin}^{2}a }  \\  =  \frac{1}{ {sin}^{2}a \times   {cos}^{2}a }  \\  \\ rhs =  {tan}^{2}a  +  {cot}^{2}a \:  + 2 \\  =   \frac{ {sin}^{2} a}{ {cos}^{2} a}  +  \frac{ {cos}^{2} a}{ {sin}^{2}a }  + 2 \\  =   \frac{  {sin}^{4}  a \:  +  {cos}^{4} a \:  + 2 {sin}^{2}a. {cos}^{2} a }{ {sin}^{2} a. {cos}^{2}a }  \\  =    \frac{ {( {sin}^{2} a +  {cos}^{2}a) }^{2} }{ {sin}^{2}a. {cos}^{2}  a}    \\  =  \frac{1}{ {sin}^{2} a. {cos}^{2}a }  \\  \\  \\  \\  \\as \:  lhs \:  = rhs \\  \\  \\ hence \: proved

Similar questions