sec^4 x - tan^4 x = 1+ 2tan^2 x.
prove this
Answers
Answered by
7
Heya!!
________
⇒sec^4x-tan^4x=1+2tan²x
L.H.S
⇒(sec²x)²-(tan²x)². a²-b²=(a+b)(a-b)
⇒(sec²x+tan²x) (sec²x-tan²x)
⇒sec²x+tan²x(1)
⇒(1+tan²x+tan²x)
⇒1+2tan²x
LHS⇔RHS
Hope this helps you ☺
________
⇒sec^4x-tan^4x=1+2tan²x
L.H.S
⇒(sec²x)²-(tan²x)². a²-b²=(a+b)(a-b)
⇒(sec²x+tan²x) (sec²x-tan²x)
⇒sec²x+tan²x(1)
⇒(1+tan²x+tan²x)
⇒1+2tan²x
LHS⇔RHS
Hope this helps you ☺
Similar questions