Math, asked by kalidindiakashvarma, 2 days ago

sec^4A+tan^4A=4/3 then tanA.secA​

Answers

Answered by namanhajong3
0

tan A. sec A sec^4A.tan^4A

Answered by pulakmath007
0

SOLUTION

GIVEN

 \displaystyle \sf{ { \sec}^{4} \theta +  { \tan}^{4} \theta =  \frac{4}{3} }

TO DETERMINE

 \displaystyle \sf{ { \sec}^{} \theta  \times   { \tan}^{} \theta  }

EVALUATION

 \displaystyle \sf{ { \sec}^{4} \theta +  { \tan}^{4} \theta =  \frac{4}{3} }

 \displaystyle \sf{  \implies \: {({ \sec}^{2} \theta  -   { \tan}^{2} \theta )}^{2}  + 2 \times { \sec}^{2} \theta   \times   { \tan}^{2} \theta=  \frac{4}{3} }

 \displaystyle \sf{  \implies \: {(1)}^{2}  + 2  { \sec}^{2} \theta   { \tan}^{2} \theta=  \frac{4}{3} }

 \displaystyle \sf{  \implies \: 1 + 2  { \sec}^{2} \theta   { \tan}^{2} \theta=  \frac{4}{3} }

 \displaystyle \sf{  \implies \:  2  { \sec}^{2} \theta   { \tan}^{2} \theta=  \frac{4}{3} - 1 }

 \displaystyle \sf{  \implies \:  2  { \sec}^{2} \theta   { \tan}^{2} \theta=  \frac{1}{3}  }

 \displaystyle \sf{  \implies \:   { \sec}^{2} \theta   { \tan}^{2} \theta=  \frac{1}{6}  }

 \displaystyle \sf{  \implies \:    { \sec}^{} \theta   { \tan}^{} \theta=  \frac{1}{ \sqrt{6} }  }

FINAL ANSWER

 \displaystyle \sf{  \:    { \sec}^{} \theta   { \tan}^{} \theta=  \frac{1}{ \sqrt{6} }  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions