sec^6A= tan^6 A + 3 tan^2A sec^2A + 1
Answers
Answered by
40
To prove :-
sec⁶A = tan⁶ A + 3 tan²A.sec²A + 1
Proof :-
RHS :
tan⁶A + 3 tan²A.sec²A + 1
= tan⁶A + 3 tan²A.(tan²A + 1) + 1 [sec²A = tan²A + 1]
= (tan²A)³ + 3 tan²A.(tan²A + 1) + (1)³
[This is of the form x³ + 3xy(x + y) + y³]
= (tan²A + 1)³
[As x³ + 3xy(x + y) + y³ = (x + y)³]
= (sec²A)³
= sec⁶A = LHS
Proved
Answered by
3
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
sec^6A= tan^6 A + 3 tan^2A sec^2A + 1
Here using formula,
a^6 - b^6 = ( a^2 - b^2 )^3 + 3a^2b^2(a^2+b^2)
let a=secA & tanA=b,
by substituting value of a & b , you will get the equation given in the question .
sec^6A - tan^6A = (sec^2A - tan^2A)^3 +3tan^2Asec^2A(sec^2A - tan^2A)
here we know that sec^2A-tan^2A=1
than we will get,
sec^6A=tan^6A +3tan^2Asec^2A + 1
PROVED
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Attachments:
Similar questions