Math, asked by malikprachi1972, 1 year ago

Sec 70÷cosec 20 + sec 59÷cot 31

Answers

Answered by 5members
7

hope it is useful for you

Attachments:
Answered by pinquancaro
1

\dfrac{\sec 70}{\csc 20}+\dfrac{\sec 59}{\cot 31}=1+\sec 31

Step-by-step explanation:

Given : Expression \frac{\sec 70}{\csc 20}+\frac{\sec 59}{\cot 31}

To find : Solve the expression ?

Solution :

\dfrac{\sec 70}{\csc 20}+\dfrac{\sec 59}{\cot 31}

Re-write the value as,

=\dfrac{\sec (90-20)}{\csc 20}+\dfrac{\sec (90-31)}{\cot 31}

Using trigonometric values,

\sec(90-\theta)=\csc\theta

=\dfrac{\csc 20}{\csc 20}+\dfrac{\csc 31}{\cot 31}

=1+\dfrac{1}{\sin 31}\times \dfrac{\sin 31}{\cos 31}

=1+\dfrac{1}{\cos 31}

=1+\sec 31

Therefore, \dfrac{\sec 70}{\csc 20}+\dfrac{\sec 59}{\cot 31}=1+\sec 31

#Learn more

Evaluate the following :

(v)\frac{tan35^{0}}{cot55^{0}}+\frac{cot78^{0}}{tan12^{0}}-1

(vi)\frac{sec70^{0}}{cosec20^{0}}+\frac{sin59^{0}}{cos31^{0}}

(vii)cosec 31° − sec 59°

(viii)(sin 72° + cos 18°) (sin 72° − cos 18°)

https://brainly.in/question/6620845

Similar questions