Sec 8a_1 ÷ sec 4a _ 1 = tan 8a÷ tan2a
Answers
Answered by
1
we have to prove that, (sec8a - 1)/(sec4a - 1) = tan8a/tan2a
proof : LHS = (sec8a - 1)/(sec4a - 1)
= (1/cos8a - 1)/(1/cos4a - 1)
= (1 - cos8a)/(1 - cos4a) × cos4a/cos8a
using formula, 1 - cos2θ = 2sin²θ
= (2sin²4a)/(2sin²2a) × cos4a/cos8a
= (2sin4a cos4a)/cos8a × (sin4a)/(2sin²2a)
using formula, 2sinx cosx = sin2x
= sin8a/cos8a × (2sin2a cos2a)/(2sin²2a)
= tan8a × (cos2a)/(sin2a)
= tan8a × cot2a
= tan8a/tan2a = RHS
hence proved
Similar questions