Math, asked by narayankonar57, 7 hours ago

(sec A- cos A ) ( cot A + tan A ) = tan A.sec ​

Answers

Answered by Sanskar260
0

(sec A - cos A ) ( cot A + tan A )

= (1/cosA - cos A) (cosA/sinA + sinA/cosA)

= (1-cos²A)/cosA × (cos²A+sin²A)/(sinA.cosA)

= sin²A/cosA × 1/sinA.cosA

= sinA/cosA × 1/cosA

= tan A . sec A

Answered by Okhey
4

\large{\underline{\underline{ \bf{⎆Question:-}}}}

\small\fbox\red{To  \: prove : - }

______________________________________

✰ (sec A- cos A ) ( cot A + tanA ) = tan A.sec A

\large{\underline{\underline{ \bf{☂ Solution:-}}}}

\small\fbox\red{ Proof : - }

\longmapsto\tt{(secA-cosA)(cotA+tanA) }

  • Assume angle 'A' as 'a'

\longmapsto\tt{( \frac{1}{cos \: a} - cos \: a)( \frac{cos \: a}{sin \: a} +  \frac{sin \: a \: }{cos \: a \: }    }

\longmapsto\tt{(  \frac{1 \:  -  \:  {cos}^{2} a}{cos \: a \: } )(  \frac{ {cos}^{2}a +  {sin}^{2}a  }{sin \: a \: .cos \: a} )     }

\huge{\underbrace{\overbrace{\color{red}{Formula \:Used}}}}

  • 1 - cos²a = sin²a
  • cos²a + sin²a = 1

\longmapsto\tt{(  \frac{ {sin}^{2}a }{cos \: a \: } )(  \frac{ 1  }{sin \: a \: .cos \: a} )     }

\longmapsto\tt{(  \frac{ {sin}a  \times sin \: a}{cos \: a \: } )(  \frac{ 1  }{sin \: a \: .cos \: a} )     }

\longmapsto\tt{(  \frac{(\cancel{sina})  \times sin \: a}{cos \: a \: } )(  \frac{ 1  }{(\cancel{sina}) .cos \: a} )     }

\longmapsto\tt{(  \frac{ sin \: a}{cos \: a \: } ) \times (  \frac{ 1  }{cos \: a} )     }

\longmapsto\tt{tan \: a \times sec \: a  }

\underline{ \boxed{ \sf{  \longmapsto\tt{tan \: a  \:  sec \: a  } }}}

\small\fbox\red{ Proved .}

Similar questions