Math, asked by amartyakunta16, 8 months ago

(sec A + tan A) (1- sin A) =​

Answers

Answered by tennetiraj86
1

Answer:

answer for the given problem is given

Attachments:
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
5

\huge\sf\pink{Answer}

☞ (sec A + tan A)(1-sin A) = cos A

━━━━━━━━━━━━━

\huge\sf\blue{Given}

\sf (sec \ A + tan \ A)(1-sin \ A)

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ The simplified form of the given Equation?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

\underline{\textsf {As Per the Question}}

\sf (sec \ A + tan \ A)(1-sin \ A)

\sf sec \ A = \dfrac{1}{cos \ A}

\sf tan \ A = \dfrac{1}{sin \ A}{cos \ A}

Substituting these values,

\sf \bigg\lgroup\dfrac{1}{cos \ A} + \dfrac{sec \ A}{cos \ A}\bigg\rgroup(1-sin \ A)

\sf \bigg\lgroup\dfrac{1+sin \ A}{cos \ A}\bigg\rgroup (1-sin \ A)

\sf \bigg\lgroup \dfrac{(1+sin \ A)(1-sin \ A)}{cos \ A}\bigg\rgroup

\sf \dfrac{1^2-sin^2 \ A}{cos \ A} «« (a+b)(a-b) = a²-b² »»

\sf \dfrac{1-sin^2 \ A}{cos \ A}

\sf \dfrac{cos^2 \ A}{cos \ A} «« 1-sin² A = cos² A »»

\sf\orange{(sec \ A + tan \ A)(1-sin \ A) = cos \ A}

━━━━━━━━━━━━━━━━━━

Similar questions