Math, asked by anushkatrivedi, 11 months ago

(Sec A+tan A) (1 - sin A) baraber h :
(a) sec A
(b) sin A
(c) cosec A
(d) cos A​

Answers

Answered by QuickSilver04
4

\huge{\mathfrak{\blue{\underline{Answer}}}}

( \sec( a )  +  \tan(a) )(1 -  \sin(a) ) \\ ( \frac{1}{ \cos( \alpha ) }  +  \frac{sin( \alpha )}{ \cos( \alpha ) } )( 1 -  \sin( \alpha ) ) \\   ( \frac{1 +  \sin( \alpha ) }{ \cos( \alpha ) } )(1 -  \sin( \alpha ) ) \\   = (\frac{1 -   \sin {}^{2} ( \alpha ) } { \cos( \alpha ) } ) \\  =  \frac{ \cos {}^{2} ( \alpha ) }{ \cos( \alpha ) }

\large{\implies{\purple{Cos(A)}}}

Answered by TheLifeRacer
5

Hi !

Solution :-. from LHS

=> (secA + tanA ) ( 1 - sinA)

=> (1/cosA + sinA)cosA) ( 1-sinA)

=> ( 1 + sinA)(1-sinA)/cosA

=> ( 1 - sin²A)/cosA

=> cos²A / cosA

=> cosA = RHS

Hence option (D) Are correct option

___________________________________

Hope it helps you

@Rajkumar111

Similar questions