sec A +tan A =p ,show that sinA=p×p-1÷p×p+1
Attachments:
Answers
Answered by
1
If secA+tanA = p. Prove that sinA = p2-1/p2+1
Given p = secA+tanA
So, p2 - 1 = (secA+tanA)2 - 1
= (sec2A + 2.secA.tanA + tan2A) - 1 [Identity (a + b)2 = a2 +2ab +b2]
Since sec2A - 1 = tan2A:
sec2A + 2.secA.tanA + tan2A - 1 become tan2A + 2.secA.tanA + tan2A
= 2 tan2A + 2.secA.tanA
= 2 tanA (tanA + secA)
So, p2 - 1 = 2 tan (tanA + secA)
Similarly p2 +1 = (secA+tanA)2 + 1
= (sec2A + 2.secA.tanA + tan2A) + 1 [Identity (a + b)2 = a2 +2ab +b2]
Since tan2A + 1 = sec2A
sec2A + 2.secA.tanA + tan2A + 1 becomes sec2A + 2.secA.tanA + sec2A
= 2 sec2A + 2.secA.tanA
= 2 secA (secA + tanA)
So, p2 +1 = 2 secA (secA + tanA)
Now, (p2-1) / (p2 +1)
= 2 tanA (tanA + secA)
...2secA(secA+tanA)
= 2tanA
...2secA
= tanA
...secA
Since tan A = sinA/cosA and Sec A = 1/cosA
==> tanA/SecA = (sinA/cosA) / ( cosA/SinA) = (sinA/cosA) * (CosA/1)
= SinA
Thank you! Thumbs up??
Given p = secA+tanA
So, p2 - 1 = (secA+tanA)2 - 1
= (sec2A + 2.secA.tanA + tan2A) - 1 [Identity (a + b)2 = a2 +2ab +b2]
Since sec2A - 1 = tan2A:
sec2A + 2.secA.tanA + tan2A - 1 become tan2A + 2.secA.tanA + tan2A
= 2 tan2A + 2.secA.tanA
= 2 tanA (tanA + secA)
So, p2 - 1 = 2 tan (tanA + secA)
Similarly p2 +1 = (secA+tanA)2 + 1
= (sec2A + 2.secA.tanA + tan2A) + 1 [Identity (a + b)2 = a2 +2ab +b2]
Since tan2A + 1 = sec2A
sec2A + 2.secA.tanA + tan2A + 1 becomes sec2A + 2.secA.tanA + sec2A
= 2 sec2A + 2.secA.tanA
= 2 secA (secA + tanA)
So, p2 +1 = 2 secA (secA + tanA)
Now, (p2-1) / (p2 +1)
= 2 tanA (tanA + secA)
...2secA(secA+tanA)
= 2tanA
...2secA
= tanA
...secA
Since tan A = sinA/cosA and Sec A = 1/cosA
==> tanA/SecA = (sinA/cosA) / ( cosA/SinA) = (sinA/cosA) * (CosA/1)
= SinA
Thank you! Thumbs up??
kcmishra005pa1uee:
pls send me the brailnliest
Similar questions