sec A + tan A = X then tan A = ?
Answers
Answered by
115
secA + tanA = x ... ( 1 )
=> 1/(secA - tanA) = x as (sec A + tan A)(sec A - tan A) = sec^2 A - tan ^2 A = 1
=> secA - tanA = 1/x ... ( 2)
Subtracting Eqn. ( 2 ) from eqn. ( 1 ),
2tanA = x - 1/x
=> tanA = (1/2) (x - 1/x).
=> 1/(secA - tanA) = x as (sec A + tan A)(sec A - tan A) = sec^2 A - tan ^2 A = 1
=> secA - tanA = 1/x ... ( 2)
Subtracting Eqn. ( 2 ) from eqn. ( 1 ),
2tanA = x - 1/x
=> tanA = (1/2) (x - 1/x).
Answered by
78
Answer: secA + tanA = X........(1)
We know that :
1 + tanA^2 = secA^2
1 = sec^2A - tan^2A
1 = (secA + tanA) (secA - tanA)
secA + tanA = 1/secA - tanA
So,
X = 1/secA - tanA
SecA - tanA = 1/X..........(2)
Subtract eq^n2 from eq^n1
secA + tanA = X
secA - tanA = 1/X
- + -
tanA = x - 1/x
tanA = (x^2 - 1)/x
Step-by-step explanation:
Similar questions