sec B + tan B = p then what is the value of sec A - tan A
Answers
Answered by
5
- 1 + tan²B = sec²B
⇒ sec²B - tan²B = 1
⇒ (sec B + tan B)(sec B - tan B) = 1
∴ sec B - tan B = 1/(sec B + tan B)
Ans = 1/p.
Rafay999:
thank you bhai
Answered by
2
(secA + tanA)(secB + tanB)(secC + tan C)
=> (secA - tanA)(secB - tanB)(secC - tanC)
{ Mulitply both sides with }
(secA + tanA)(secB + tanB)(secC + tan C)",
we get,
(secA + tanA)2(secB + tanB)2(secC + tan C)2
=> (sec2A - tan2A)(sec2B - tan2B)(sec2C - tan2C)
= (1)(1)(1) = 1
=> [(secA + tanA)(secB + tanB)(secC + tanC)]2=1
(secA + tanA)(secB + tanB)(secC + tan C) = ± 1
Similarly, we get
(secA – tanA)(secB – tanB)(secC – tan C) = ± 1
Hope it helps
=> (secA - tanA)(secB - tanB)(secC - tanC)
{ Mulitply both sides with }
(secA + tanA)(secB + tanB)(secC + tan C)",
we get,
(secA + tanA)2(secB + tanB)2(secC + tan C)2
=> (sec2A - tan2A)(sec2B - tan2B)(sec2C - tan2C)
= (1)(1)(1) = 1
=> [(secA + tanA)(secB + tanB)(secC + tanC)]2=1
(secA + tanA)(secB + tanB)(secC + tan C) = ± 1
Similarly, we get
(secA – tanA)(secB – tanB)(secC – tan C) = ± 1
Hope it helps
Similar questions