Math, asked by kustanuja17, 9 months ago

(sec θ + cos θ) (sec θ – cos θ) = tan²θ + sin²θ​

Answers

Answered by MrMirage
2

Answer:

Step-by-step explanation:

Given : (secθ +cos θ)(sec θ – cos θ) = tan²θ + sin²θ

L.H.S :  (sec θ + cos θ)(sec θ – cos θ)

= (sec²θ – cos²θ)

[By using the identity, (a + b)(a – b) = a² – b²]

[By using the identity, sec²θ = 1 + tan²θ and cos²θ = 1 – sin² θ]

= 1 + tan² θ – (1 – sin² θ)

= 1 + tan² θ – 1 + sin² θ

= tan²  θ + sin² θ

(secθ +cos θ)(sec θ – cos θ) = tan²θ + sin²θ

L.H.S = R.H.S  

hence proved

please mark it as brainliest....

Similar questions
Math, 4 months ago