(sec θ + cos θ) (sec θ – cos θ) = tan²θ + sin²θ
Answers
Answered by
2
Answer:
Step-by-step explanation:
Given : (secθ +cos θ)(sec θ – cos θ) = tan²θ + sin²θ
L.H.S : (sec θ + cos θ)(sec θ – cos θ)
= (sec²θ – cos²θ)
[By using the identity, (a + b)(a – b) = a² – b²]
[By using the identity, sec²θ = 1 + tan²θ and cos²θ = 1 – sin² θ]
= 1 + tan² θ – (1 – sin² θ)
= 1 + tan² θ – 1 + sin² θ
= tan² θ + sin² θ
(secθ +cos θ)(sec θ – cos θ) = tan²θ + sin²θ
L.H.S = R.H.S
hence proved
please mark it as brainliest....
Similar questions