Math, asked by kartikjarora, 1 year ago

sec squared theta + cosec squared theta is greater than equal to 4

Answers

Answered by MaheswariS
11

\textbf{To prove:}

sec^2\theta+cosec^2\theta\;{\geq}\;4

\textbf{Solution:}

\text{We know that,}

\text{For all values of}\;\theta,\;-1\;{\leq}\;sin\theta\;{\leq}\;1

\implies\,sin^2\theta\;{\leq}\;1

\implies\,\dfrac{1}{sin^2\theta}\;{\geq}\;1

\text{Now,}

sec^2\theta+cosec^2\theta

=\dfrac{1}{cos^2\theta}+\dfrac{1}{sin^2\theta}

=\dfrac{sin^2\theta+cos^2\theta}{cos^2\theta\,sin^2\theta}

=\dfrac{1}{cos^2\theta\,sin^2\theta}

\text{Multiply both numerator and denominator by 4}

=\dfrac{4}{4\,cos^2\theta\,sin^2\theta}

=\dfrac{4}{4\,sin^2\theta\,cos^2\theta}

=\dfrac{4}{(2\,sin\theta\,cos\theta)^2}

=\dfrac{4}{(sin\,2\theta)^2}

=4{\times}\dfrac{1}{sin^22\theta}

{\geq}\;4(1)

{\geq}\;4

\textbf{Answer:}

\implies\boxed{\bf\,sec^2\theta+cosec^2\theta\;{\geq}\;4}

Similar questions