Sec(tan^-1 x) ka interigation
Answers
Answered by
0
Explanation:
To Simplify: sec(tan-1x)
Let,
y = tan-1x
⇒ x = tan y
⇒ x = sin y / cos y (Since, tan y = sin y / cos y)
Squaring on both the sides,
⇒ x2 = sin2y / cos2y
Adding 1 on both the sides of the equation,
⇒ x2 + 1 = (sin2y / cos2y) + 1
⇒ x2 + 1 = (sin2y + cos2y) / cos2y
⇒ x2 + 1 = 1 / cos2y (Since, sin2y + cos2y = 1)
⇒ x2 + 1 = sec2y
Taking square root on both the sides,
⇒ √x2 + 1 = sec2y
⇒ √x2 + 1 = sec(tan-1x) (Since, y = tan-1x)
Thus, the value of sec(tan-1x) is √x2 + 1.
Attachments:
Similar questions
Physics,
4 days ago
Social Sciences,
4 days ago
Math,
9 days ago
Chemistry,
9 days ago
Math,
8 months ago