Math, asked by harshpatel7216, 4 months ago

sec
 {sec}^{5}x \: tanx \: dx

Answers

Answered by allysia
2

Correction in question:

\\\tt \int\limits sec^{ 5 }x \ tanx \   dx

Answer:

\\\tt \dfrac{sec^{5} x}{5} + C

Step-by-step explanation:

\\\tt \int\limits sec^{5}x \ tanx \   dx \\\\\tt \rightarrow    \int\limits( sec^{4}x)\ (sec x\ tanx) \   dx \\\\    

Let y = sec x

Now,

\\\tt dy = secx\ tanx\  dx

Using these values in the integrand,

\\\tt  \int\limits y^{4} ( \dfrac{sec x\ tanx}{sec x \ tan x})  \   dy \\\\ \\=  \int\limits y^{4} \   dy \\\\\\= \dfrac{y^{5}}{5} + C

Inserting the value of y in above result,

\\\tt \dfrac{sec^{5} x}{5} + C

Similar questions