Sec theta-1/sec theta +1=(sin theta/1+cos theta)2
Answers
L.H.S =(secA – 1)/ (sec A + 1)
(1/cosA - 1)/ (1/cos A +1)
(1 – cosA/cosA)/ (1 + cosA/cosA)
(1 – cosA)/ (1 + cosA)
Multiplying numerator and denominator by (1 + cosA), we get
(1 - cosA)(1 + cosA)/ (1 + cosA)²
(1 – cos²A)/ (1 + cosA)²
sin²A/ (1 + cosA)²
[ sinA/(1 + cosA) ]² = R.H.S
Cheers!
GIVEN:
Or using , we can write the above identity as:
SOLUTION:
Simplify LHS and RHS separately.
LHS:
We know that secθ=1/cosθ.
RHS:
We know that sin²θ = 1 - cos²θ.
Use the identities (a² - b²) = (a + b)(a - b) and (a + b)² = (a + b)(a + b).
LHS = RHS.
HENCE PROVED.
FUNDAMENTAL TRIGONOMETRIC IDENTITIES:
T-RATIOS:
[tex]\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 & \sqrt{3} & \rm Not \: De fined \\ \\ \rm cosec A & \rm Not \: De fined & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm Not \: De fined \\ \\ \rm cot A & \rm Not \: De fined & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array} [/tex]
Regards
Sujal Sirimilla
Ex brainly star.