sec theta - 10 theta = a so prove sec theta = 1/2 [a+1/a] and tan theta = 1/2 [ 1/a - a ]
Answers
Answer:
ʜᴇʏᴀ!!!
Step-by-step explanation:
sec^2 theta - tan^2 theta = 1
tan^2 theta= sec^2 theta-1
sec theta - √ sec^2 theta -1 = a
(sec theta -a)^2 = sec^2 theta -1
sec^2 theta + a.a - 2a sec the ta = sec^2 theta -1
a.a - 2a sec theta = -1
sec theta= a.a +1)/2a
= 1/2 ( a+1/a)
From the principles of trigonometry we know that :-
sec²θ - tan²θ = 1
We know that by expansions : a² - b² = ( a + b )( a - b )
So we can write the trigonometric identity as :-
( secθ + tanθ )( secθ - tanθ ) = 1
Given in the question secθ - tanθ = a
So basically we will have :-
a ( secθ + tanθ ) = 1
⇒ secθ + tanθ = 1/a
We have two equations :
Adding them :
secθ - tanθ = a ..............( 1 )
secθ + tanθ = 1/a ............( 2 )
------------------------
2 secθ = a + 1/a
⇒ secθ = 1/2 [ a + 1/a ]
Subtracting both :-
secθ - tanθ = a ..............( 1 )
secθ + tanθ = 1/a ............( 2 )
-------------------------
- 2 tanθ = a - 1/a
⇒ 2 tanθ = 1/a - a
⇒ tanθ = 1/2 [ 1/a - a ]
Hence they are proved !