Math, asked by s1hZunsdraprathe, 1 year ago

Sec theta +tan theta-1/tan theta-sec theta+1=cos theta/1-sin theta

Answers

Answered by mysticd
690
go through the solution step by step
Attachments:
Answered by presentmoment
262

Given :

\frac{\sec \theta+\tan \theta-1}{\tan \theta-\sec \theta+1}=\frac{\cos \theta}{1-\sin \theta}

To prove:  

\frac{\sec \theta+\tan \theta-1}{\tan \theta-\sec \theta+1}=\frac{\cos \theta}{1-\sin \theta}

Proof:

LHS = \frac{\sec \theta+\tan \theta-1}{\tan \theta-\sec \theta+1}

We can write, \sec ^{2} \theta-\tan ^{2} \theta in place of 1 in the numerator,

Thus, LHS = \frac{\sec \theta+\tan \theta-\left(\sec ^{2} \theta-\tan ^{2} \theta\right)}{\tan \theta-\sec \theta+1}

By using the formula a^{2}-b^{2}=(a+b)(a-b)

\frac{\sec \theta+\tan \theta-[(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)]}{\tan \theta-\sec \theta+1}

Taking secθ+tanθ common in the numerator

\Rightarrow \frac{\sec \theta+\tan \theta(1-(\sec \theta-\tan \theta))}{\tan \theta-\sec \theta+1}

\Rightarrow \frac{\sec \theta+\tan \theta(\tan \theta-\sec \theta+1)}{\tan \theta-\sec \theta+1}

\begin{array}{l}{\Rightarrow \sec \theta+\tan \theta} \\ {\Rightarrow \frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}}\end{array}

Where 1-\sin ^{2} \theta=\cos ^{2} \theta

\frac{1+\sin \theta}{\cos \theta} \times \frac{1-\sin \theta}{1-\sin \theta}

\frac{\cos \theta}{1-\sin \theta} = RHS

We proved the left hand side equal to right hand side by using some of the basic trigonometric identities. If you have all of these formula on your tips, you can solve this as well as the similar questions that involve proving the left hand side equals to the right hand side.

Similar questions