Math, asked by yoyobhai, 1 year ago

sec theta + tan theta = p , show that sin theta = p^2 - 1 ÷ p^2 +1

Answers

Answered by MANKOTIA
7
this is required answer
Attachments:
Answered by vijay876751ac2
4

Given :

If sec \theta + tan \theta = p, then show that sin \theta = \large\dfrac {p² - 1} {p² + 1}

Solution :

\normalsize\sf\ Given \: sec \: \theta \:  +  \: tan \: \theta \:  =  \: p \:  \rule  {25mm}{1pt} \: {\boxed{\sf{\red{1}}}}

\sf\ We \: know \: that \: {sec}^{2} \: \theta \:  -  \:  {tan}^{2} \: \theta \:  =  \: 1

\sf\ ( \: sec \: \theta \:  +  \: tan \: \theta \: ) \: ( \: sec \: \theta \:  -  \: tan \: \theta \: ) \:  =  \: 1

\sf\ ⇒ \: p \: ( \: sec \: \theta \:  -  \: tan \: \theta \: ) \:  =  \: 1

\sf\ ⇒ \: sec \: \theta \:  -  \: tan \: \theta \:  \:  =  \: {\large{\dfrac{1}{p}}} \:  \rule {25mm}{1pt}  \: {\boxed{\mathcal{\red{2}}}}

Now, Add Eq 1 + 2

\sf\ sec \: \theta \:   \cancel{+  \: tan \: \theta} \:  =  \: p \\  \dfrac{\sf\ sec \: \theta \:  \cancel{ -  \: tan \: \theta} \:  =  \: {{\sf{ \dfrac{1}{p}}}}}{\sf\ \: 2 \: sec \: \theta \:  =  \: p \:  +  {{\sf{ \dfrac{1}{p}}}}}

\sf\ ⇒ \: 2 \: sec \: \theta \:  =  \: {{\sf{ \dfrac{ {p}^{2} \:  +  \: 1}{p}}}}

\sf\ ⇒ \: sec \: \theta \:  =  \: {{\sf{ \dfrac{ {p}^{2} \:  +  \: 1}{2p}}}} \:  \rule {25mm}{1pt} \: {\boxed{\red{\sf{3}}}}

\sf\ sec \: \theta \:  +  \: tan \: \theta \:  =  \: p \\  \dfrac{\sf\ sec \: \theta \:  -  \: tan \: \theta \:  =  \:  \dfrac{1}{p}}{\sf\ ⇒ \: 2 \: tan \: \theta \:  \:  =  \: p \:  -  \:  \dfrac{1}{p}}

\sf\ ⇒ \: 2 \: tan \: \theta \:  =  \:  {{\dfrac{ {p}^{2} \:  -  \: 1}{p}}}

\sf\ ⇒ \: tan \: \theta \:  =  \: {{ \dfrac{ {p}^{2} \:  -  \: 1}{2p}}} \: \rule {25mm}{1pt} \: {\boxed{\sf{\red{4}}}}

Now, divide equation 4 and 3 " \sf\ ( \dfrac {4}{3} ) "

\sf\  \dfrac{4}{3} \:  =  \:  \dfrac{tan \: \theta}{sec \: \theta} \:  =  \:  {{\dfrac{ \dfrac{ {p}^{2} \:  -  \: 1}{\cancel{2p}}}{ \dfrac{ {p}^{2} \:  +  \: 1}{\cancel{2p}}}}}

\sf\ ⇒ \:  \dfrac{ \dfrac{sin \: \theta}{cos \: \theta} }{cos \: \theta} \:  =  \:  \dfrac{ {p}^{2} \:  -  \: 1}{ {p}^{2} \:  +  \: 1}

{\large{\sf{\red{⇒}}}} \:  \:  \: {\large{\boxed{\sf{\red{sin \: \theta \:  =  \:  {p}^{2} \:  -  \: 1}}}}}

\rule{100mm}{1pt}

Know More :

Identidites :

\sf\ \:  \: sin^{2} \: \theta \:  +  \: cos {}^{2} \: \theta \:  =  \: 1

\sf\ \:  \: sec {}^{2} \: \theta \:  -  \: tan {}^{2} \: \theta \:  =  \: 1

\sf\ \:  \:  {cosec}^{2} \: \theta \:  -  \:  {cot}^{2} \: \theta \:  =  \: 1

\tiny\

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions