sec theta-tan theta=x show that sec theta +tan theta=1÷x
Answers
Answered by
1
[tex]sec^{2}\theta -tan ^{2}\theta =1
(sec\theta-tan\theta)(sec\theta+tan\theta) = 1
Sec\theta+tan\theta = 1/(sec\theta-tan\theta)
hence prove
sec\theta+tan\theta = 1/x[/tex]
Answered by
2
Hi ,
Here I am using A Instead of theta.
sec A - tan A = x ----( 1 )
we know the trigonometric identity ,
sec² A - tan² A = 1
( secA - tanA ) ( secA + tanA ) = 1
x ( secA + tan A ) = 1 [ fom ( 1 ) ]
sec A + tan A = 1/x
Hence proved .
:)
Here I am using A Instead of theta.
sec A - tan A = x ----( 1 )
we know the trigonometric identity ,
sec² A - tan² A = 1
( secA - tanA ) ( secA + tanA ) = 1
x ( secA + tan A ) = 1 [ fom ( 1 ) ]
sec A + tan A = 1/x
Hence proved .
:)
Similar questions